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Once upon a time there was a sensible straight line who was
hopelessly in love with a dot. ‘You’re the beginning and the end,
the hub, the core and the quintessence,’ he told her tenderly, but
the frivolous dot wasn’t a bit interested, for she only had eyes for a
wild and unkempt squiggle who never seemed to have anything on
his mind at all. All of the line’s romantic dreams were in vain, until
he discovered . . . angles! Now, with newfound self-expression, he
can be anything he wants to be—a square, a triangle, a
parallelogram . . .And that’s just the beginning!
—Norton Juster (The Dot and the Line: A Romance in Lower
Mathematics 1963)

I came to the position that mathematical analysis is not one of many
ways of doing economic theory: It is the only way. Economic theory
is mathematical analysis. Everything else is just pictures and talk.
—R. E. Lucas, Jr. (2001)

Purpose
The subject matter that modern economics students are expected to master makes signifi-
cant mathematical demands. This is true even of the less technical “applied” literature that
students will be expected to read for courses in fields such as public finance, industrial
organization, and labour economics, amongst several others. Indeed, the most relevant lit-
erature typically presumes familiarity with several important mathematical tools, especially
calculus for functions of one and several variables, as well as a basic understanding of mul-
tivariable optimization problems with or without constraints. Linear algebra is also used to
some extent in economic theory, and a great deal more in econometrics.

The purpose of Essential Mathematics for Economic Analysis, therefore, is to help eco-
nomics students acquire enough mathematical skill to access the literature that is most
relevant to their undergraduate study. This should include what some students will need
to conduct successfully an undergraduate research project or honours thesis.

As the title suggests, this is a book on mathematics, whose material is arranged to allow
progressive learning of mathematical topics. That said, we do frequently emphasize eco-
nomic applications, many of which are listed on the inside front cover. These not only
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help motivate particular mathematical topics; we also want to help prospective economists
acquire mutually reinforcing intuition in both mathematics and economics. Indeed, as the
list of examples on the inside front cover suggests, a considerable number of economic
concepts and ideas receive some attention.

We emphasize, however, that this is not a book about economics or even about
mathematical economics. Students should learn economic theory systematically from
other courses, which use other textbooks. We will have succeeded if they can concentrate
on the economics in these courses, having already thoroughly mastered the relevant
mathematical tools this book presents.

Special Features and Accompanying Material
Virtually all sections of the book conclude with exercises, often quite numerous. There are
also many review exercises at the end of each chapter. Solutions to almost all these exercises
are provided at the end of the book, sometimes with several steps of the answer laid out.

There are two main sources of supplementary material. The first, for both students and
their instructors, is via MyLab. Students who have arranged access to this web site for
our book will be able to generate a practically unlimited number of additional problems
which test how well some of the key ideas presented in the text have been understood.
More explanation of this system is offered after this preface. The same web page also has
a “student resources” tab with access to a Student’s Manual with more extensive answers
(or, in the case of a few of the most theoretical or difficult problems in the book, the only
answers) to problems marked with the special symbol SM .

The second source, for instructors who adopt the book for their course, is an Instructor’s
Manual that may be downloaded from the publisher’s Instructor Resource Centre.

In addition, for courses with special needs, there is a brief online appendix on trigono-
metric functions and complex numbers. This is also available via MyLab.

Prerequisites
Experience suggests that it is quite difficult to start a book like this at a level that is really
too elementary.1 These days, in many parts of the world, students who enter college or uni-
versity and specialize in economics have an enormous range of mathematical backgrounds
and aptitudes. These range from, at the low end, a rather shaky command of elementary
algebra, up to real facility in the calculus of functions of one variable. Furthermore, for
many economics students, it may be some years since their last formal mathematics course.
Accordingly, as mathematics becomes increasingly essential for specialist studies in eco-
nomics, we feel obliged to provide as much quite elementary material as is reasonably
possible. Our aim here is to give those with weaker mathematical backgrounds the chance
to get started, and even to acquire a little confidence with some easy problems they can
really solve on their own.

1 In a recent test for 120 first-year students intending to take an elementary economics course, there
were 35 different answers to the problem of expanding (a + 2b)2.
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To help instructors judge how much of the elementary material students really know
before starting a course, the Instructor’s Manual provides some diagnostic test material.
Although each instructor will obviously want to adjust the starting point and pace of a
course to match the students’ abilities, it is perhaps even more important that each individual
student appreciates his or her own strengths and weaknesses, and receives some help and
guidance in overcoming any of the latter. This makes it quite likely that weaker students
will benefit significantly from the opportunity to work through the early more elementary
chapters, even if they may not be part of the course itself.

As for our economic discussions, students should find it easier to understand them if
they already have a certain very rudimentary background in economics. Nevertheless, the
text has often been used to teach mathematics for economics to students who are studying
elementary economics at the same time. Nor do we see any reason why this material cannot
be mastered by students interested in economics before they have begun studying the subject
in a formal university course.

Topics Covered
After the introductory material in Chapters 1 to 3, a fairly leisurely treatment of standard sin-
gle variable differential calculus is contained in Chapters 4 to 7. This is followed by Chapter
8 on concave and convex functions, by Chapter 9 on optimization, Chapter 10 on integra-
tion, and then by some basic financial models as well as difference and differential equations
in Chapter 11. This may be as far as some elementary courses will go. Students who already
have a thorough grounding in single variable calculus, however, may only need to go fairly
quickly over some special topics in these chapters such as elasticity and conditions for
global optimization that are often not thoroughly covered in standard calculus courses.

We have already suggested the importance for budding economists of the algebra
of matrices and determinants (Chapters 12 and 13), of multivariable calculus (Chapters
14–16), and of optimization theory with and without constraints (Chapters 17–20). These
last nine chapters in some sense represent the heart of the book, on which students with a
thorough grounding in single variable calculus can probably afford to concentrate.

Satisfying Diverse Requirements
The less ambitious student can concentrate on learning the key concepts and techniques
of each chapter. Often, these appear boxed and/or in colour, in order to emphasize their
importance. Problems are essential to the learning process, and the easier ones should defi-
nitely be attempted. These basics should provide enough mathematical background for the
student to be able to understand much of the economic theory that is embodied in applied
work at the advanced undergraduate level.

Students who are more ambitious, or who are led on by more demanding teachers, can
try the more difficult problems. They can also study the more technical material which is
intended to encourage students to ask why a result is true, or why a problem should be
tackled in a particular way. If more readers gain at least a little additional mathematical
insight from working through these more challenging parts of our book, so much the better.
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The most able students, especially those intending to undertake postgraduate study in
economics or some related subject, will benefit from a fuller explanation of some topics
than we have been able to provide here. On a few occasions, therefore, we take the liberty
of referring to our more advanced companion volume, Further Mathematics for Economic
Analysis (usually abbreviated to FMEA). This is written jointly with our colleague Atle
Seierstad in Oslo. In particular, FMEA offers a proper treatment of topics like systems of
difference and differential equations, as well as dynamic optimization, that we think go
rather beyond what is really “essential” for all economics students.

Changes in the Fourth Edition
We have been gratified by the number of students and their instructors from many parts
of the world who appear to have found the first three editions useful.2 We have accord-
ingly been encouraged to revise the text thoroughly once again. There are numerous minor
changes and improvements, including the following in particular:

1. The main new feature is MyMathLab Global,3 explained on the page after this preface,
as well as on the back cover.

2. New exercises have been added for each chapter.

3. Some of the figures have been improved.

Changes in the Fifth Edition
The most significant change in this edition is that, tragically, we have lost the main author
and instigator of this project. Our good friend and colleague Knut Sydsæter died suddenly
on 29th September 2012, while on holiday in Spain with his wife Malinka Staneva, a few
days before his 75th birthday. An obituary written by Jens Stoltenberg, at that time the
Prime Minister of Norway, includes this tribute to Knut’s skills as one of his teachers:

With a small sheet of paper as his manuscript he introduced me and genera-
tions of other economics students to mathematics as a tool in the subject of
economics. With professional weight, commitment, and humour, he was both
a demanding and an inspiring lecturer. He opened the door into the world of
mathematics. He showed that mathematics is a language that makes it possible
to explain complicated relationships in a simple manner.

At a web page that hosts a copy of this obituary one can also find other tributes to Knut,
including some recollections of how previous editions of this book came to be written.4

Despite losing Knut as its main author, it was clear that this book needed to be kept
alive, following desires that Knut himself had often expressed while he was still with us.

2 Different English versions of this book have been translated into Albanian, French, German, Hun-
garian, Italian, Portuguese, Spanish, and Turkish.

3 Superseded by MyLab for this sixth edition.
4 See https://web.stanford.edu/˜hammond/sydsaeter.html

https://web.stanford.edu/%CB%9Chammond/sydsaeter.html
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Fortunately, it had already been agreed that the team of co-authors should be joined by
Andrés Carvajal, a former colleague of Peter’s at Warwick who, at the time of preparing
the Fifth Edition, had just joined the University of California at Davis. Andrés had already
produced a new Spanish version of the previous edition of this book; he has now become a
co-author of this latest English version. It is largely on his initiative that we have taken the
important step of extensively rearranging the material in the first three chapters in a more
logical order, with set theory now coming first.

The other main change is one that we hope is invisible to the reader. Previous edi-
tions had been produced using the “plain TEX” typesetting system that dates back to the
1980s, along with some ingenious macros that Arne had devised in collaboration with
Arve Michaelsen of the Norwegian typesetting firm Matematisk Sats. For technical rea-
sons we decided that the new edition had to be produced using the enrichment of plain TEX
called LATEX that has by now become the accepted international standard for typesetting
mathematical material. We have therefore attempted to adapt and extend some standard
LATEX packages in order to preserve as many good features as possible of our previous
editions.

Changes in the Sixth Edition
For this sixth edition, the surviving authors decided to rearrange the chapters considerably.
Recent previous editions included a chapter on linear programming, which was deferred
until after the two chapters on matrix algebra. Yet the key idea of complementary slackness
had arisen previously in an earlier chapter on nonlinear programming. So we have moved
matrix algebra much further forward, so that it precedes multivariate calculus. This allows
new tools to be used in our treatment of multivariate calculus, and subsequently in the last
four chapters that are now devoted exclusively to optimization.

Not only have the existing chapters been rearranged, however. We have increased their
number from 17 to 20. This is partly because the chapter on constrained optimization has
been split into two. The first part dealing with equality constraints now comes in Chapter
18, before Chapter 19 on linear programming, including its discussion of complementary
slackness. The last part of the earlier chapter on inequality constraints is now the separate
Chapter 20.

The other two extra chapters are new. Chapter 8 considers concave and convex functions
of one variable, including results on supergradients of concave functions and subgradients
of convex functions that play a key role in the theory of optimization. Later chapters extend
some of these results to functions of 2 and then n variables. There is also a brief chapter
(16) on multiple integrals.

Finally, we mention significant additions to Chapter 13 that consider eigenvalues and
quadratic forms. These additions allow a more extensive treatment, based on the Hessian
matrix, of second-order conditions for, in Chapter 15, a function of several variables to be
concave, and in Chapter 17, for a critical point to be a maximum or minimum. As a result,
we can provide a somewhat better discussion in Chapter 20 of how, for the case of concave
programming problems, the Karush–Kuhn–Tucker conditions provide sufficient conditions
for an optimal point.
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1
E S S E N T I A L S O F L O G I C
A N D S E T T H E O R Y

It is clear that economics, if it is to be a science at all, must be a mathematical science.
—William Stanley Jevons1

Arguments in mathematics require tight logical reasoning, and arguments in modern eco-
nomic analysis are no exception to this rule. It is useful for us, then, to present some basic

concepts from logic, as well as a brief section on mathematical proofs.
We precede this with a short introduction to set theory. This is useful not just for its impor-

tance in mathematics, but also because of a key role that sets play in economics: in most
economic models, it is assumed that economic agents pursue some specific goal like profit,
and make an optimal choice from a specified feasible set of alternatives.

The chapter winds up with a discussion of mathematical induction. Occasionally, this
method is used directly in economic arguments; more often, it is needed to understand
mathematical results which economists use.

1.1 Essentials of Set Theory
In daily life, we constantly group together objects of the same kind. For instance, the faculty
of a university signifies all the members of its academic staff. A garden refers to all the
plants that are growing in it. An economist may talk about all Scottish firms with over 300
employees, or all taxpayers in Germany who earned between €50 000 and €100 000 in 2019.
Or suppose a student who is planning what combination of laptop and smartphone to buy
for use in college. The student may consider all combinations whose total price does not
exceed what she can afford. In all these cases, we have a collection of objects that we may
want to view as a whole. In mathematics, such a collection is called a set, and the objects
that belong to the set are called its elements, or its members.

1 The Theory of Political Economy (1871)
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The simplest way to specify a set is to list its members, in any order, between the open-
ing brace { and the closing brace }. An example is the set whose members are the first
three letters in the English alphabet, S = {a, b, c}. Or it might be a set consisting of three
members represented by the letters a, b, and c. For example, if a = 0, b = 1, and c = 2, then
S = {0, 1, 2}. Also, S = {a, b, c} denotes the set of roots of the cubic equation (x − a)(x −
b)(x − c) = 0 in the unknown x, where a, b, and c are any three real numbers. Verbally, the
braces are read as “the set consisting of”.

Since a set is fully specified by listing all its members, two sets A and B are considered
equal if they contain exactly the same elements: each element of A is an element of B; con-
versely, each element of B is an element of A. In this case, we write A = B. Consequently,
{1, 2, 3} = {3, 2, 1}, because the order in which the elements are listed has no significance;
and {1, 1, 2, 3} = {1, 2, 3}, because a set is not changed if some elements are listed more
than once.

The symbol “∅” denotes the set that has no elements. It is called the empty set. Note that
it is the, and not an, empty set. This is so, following the principle that a set is completely
defined by listing all its members: there can only be one set that contains no elements.
The empty set is the same, whether it is being studied by a child in elementary school who
thinks about cows that can jump over the moon, or by a physicist at CERN who thinks about
subatomic particles that move faster than the speed of light—or, indeed, by an economics
student reading this book!

Specifying a Property
Not every set can be defined by listing all its members, however. For one thing, some sets
are infinite—that is, they contain infinitely many members. Such infinite sets are rather
common in economics. Take, for instance, the budget set that arises in consumer theory.
Suppose there are two goods with quantities denoted by x and y. Suppose these two goods
can be bought at prices per unit that equal p and q, respectively. A consumption bundle is
a pair of quantities of the two goods, (x, y). Its value at prices p and q is px + qy. Suppose
that a consumer has an amount m to spend on the two goods. Then the budget constraint is
px + qy ≤ m, assuming that the consumer is free to underspend. If one also accepts that the
quantity consumed of each good must be nonnegative, then the budget set, which will be
denoted by B, consists of all those consumption bundles (x, y) satisfying the three inequal-
ities px + qy ≤ m, x ≥ 0, and y ≥ 0. This set is illustrated in Fig. 4.4.12. Standard notation
for it is

B = {(x, y) : px + qy ≤ m, x ≥ 0, y ≥ 0} (1.1.1)

The two braces { and } are still used to denote “the set consisting of”. However, instead
of listing all the members, which is impossible for the infinite set of points in the trian-
gular budget set B, it is specified in two parts. First, before the colon, (x, y) is used to
denote the typical member of B, here a consumption bundle that is specified by listing
the respective quantities of the two goods. The colon is read as “such that”.2 Second,
after the colon, the three properties that these typical members must satisfy are all listed.

2 Alternative notation for “such that” is |.
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This completes the specification of B. Indeed, Eq. (1.1.1) is an example of the general
specification:

S = {typical member : defining properties}

Note that it is not just infinite sets that can be specified by properties like this—finite sets
can too. Indeed, some finite sets almost have to be specified in this way, such as the set of
all human beings currently alive.

Set Membership
As we stated earlier, sets contain members or elements. Some convenient standard notation
is used to express the relation between a set and its members. First,

x ∈ S

indicates that x is an element of S. Note the special “belongs to” symbol ∈ (which is a
variant of the Greek letter ε, or “epsilon”).

To express the fact that x is not a member of S, we write x /∈ S. For example, d /∈ {a, b, c}
says that d is not an element of the set {a, b, c}.

To see how set membership notation can be applied, consider again the example of a
first-year college student who must buy both a laptop and a smartphone. Suppose that there
are two types of each device, “cheap” and “expensive”. Suppose too that the student cannot
afford to combine the expensive smartphone with the expensive laptop. Then the set of three
combinations that the student can afford is {cheap laptop and cheap smartphone, expensive
laptop and cheap smartphone, cheap laptop and expensive smartphone}. Thus, the student
is restricted to choosing one of the three combinations in this set. If we denote the choice
by s and the affordable set by B, we can say that the student’s choice is constrained by
the requirement that s ∈ B. If we denote by t the unaffordable combination of an expen-
sive laptop and an expensive smartphone, we can express this unaffordability by writing
t /∈ B.

Let A and B be any two sets. Set A is a subset of B if it is true that every member of A is
also a member of B. When that is the case, we write A ⊆ B. In particular, A ⊆ A and ∅ ⊆ A.
Recall that two sets are equal if they contain the same elements. From the definitions, we
see that A = B when, and only when, both A ⊆ B and B ⊆ A.

To continue the previous example, suppose that the student can make do with a cheap
smartphone, so she chooses not to buy an expensive one. Having made this choice, she
only needs to decide which laptop to buy in addition to the cheap smartphone. Let A denote
the set {cheap laptop and cheap smartphone, expensive laptop and cheap smartphone} of
options the student has not ruled out. Then we have A ⊆ B.

Set Operations
Sets can be combined in many different ways. Especially important are three operations:
the union, intersection, and the difference of any two sets A and B, as shown in Table 1.1.1.
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Table 1.1.1 Elementary set operations

Notation Name The set that consists of:

A ∪ B A union B all elements belonging to at least one of the sets A and B

A ∩ B A intersection B all elements belonging to both A and B

A \ B A minus B all elements belonging to set A, but not to B

In symbols:

A ∪ B = {x : x ∈ A or x ∈ B}
A ∩ B = {x : x ∈ A and x ∈ B}
A \ B = {x : x ∈ A and x /∈ B}

It is important to notice that the word “or” in mathematics is inclusive, in the sense that the
statement “x ∈ A or x ∈ B” allows for the possibility that x ∈ A and x ∈ B are both true.

E X A M P L E 1.1.1 Let A = {1, 2, 3, 4, 5} and B = {3, 6}. Find A ∪ B, A ∩ B, A \ B, and B \ A.3

Solution: A ∪ B = {1, 2, 3, 4, 5, 6}, A ∩ B = {3}, A \ B = {1, 2, 4, 5}, B \ A = {6}.

As an economic example, considering everybody who worked in California during the
year 2019. Let A denote the set of all those workers who have an income of at least $35 000
for the year; let B denote the set of all who have a net worth of at least $200 000. Then
A ∪ B would be those workers who earned at least $35 000 or who had a net worth of at
least $200 000, whereas A ∩ B are those workers who earned at least $35 000 and who also
had a net worth of at least $200 000. Finally, A \ B would be those who earned at least
$35 000 but whose net worth was less than $200 000.

If two sets A and B have no elements in common, they are said to be disjoint. Thus, the
sets A and B are disjoint if A ∩ B = ∅.

A collection of sets is often referred to as a family of sets. When considering a certain
family of sets, it is often natural to think of each set in the family as a subset of one particular
fixed setU, hereafter called the universal set. In the previous example, the set of all residents
of California in 2019 would be an obvious choice for a universal set.

If A is a subset of the universal set U, then according to the definition of difference, U \ A
is the set of elements of U that are not in A. This set is called the complement of A in U and
is denoted by Ac.4 When finding the complement of a set, it is very important to be clear
about which universal set is being used.

E X A M P L E 1.1.2 Let the universal set U be the set of all students at a particular university. Among
these, let F denote the set of female students, M the set of all mathematics students, C the set
of students in the university choir, B the set of all biology students, and T the set of all tennis

3 Here and throughout the book, we often write the examples in the form of exercises. We strongly
suggest that you first attempt to solve the problem, while covering the solution, and then gradually
reveal the proposed solution to see if you are right.

4 Other ways of denoting the complement of A include �A and Ã.
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players. Describe the members of the following sets: U \ M, M ∪ C, F ∩ T , M \ (B ∩ T),
and (M \ B) ∪ (M \ T).

Solution: U \ M consists of those students who are not studying mathematics, M ∪ C of
those students who study mathematics and/or are in the choir. The set F ∩ T consists of
those female students who play tennis. The set M \ (B ∩ T) has those mathematics students
who do not both study biology and play tennis. Finally, the last set (M \ B) ∪ (M \ T) has
those students who either are mathematics students not studying biology or mathematics
students who do not play tennis. Can you see that the last two sets must be equal?5

Venn Diagrams
When considering how different sets may be related, it is often both instructive and
extremely helpful to represent each set by a region in a plane. Diagrams constructed in this
manner are called Venn diagrams.6

For pairs of sets, the definitions discussed in the previous section can be illustrated as in
Fig. 1.1.1. By using the definitions directly, or by illustrating sets with Venn diagrams, one
can derive formulas that are universally valid regardless of which sets are being considered.
For example, the formula A ∩ B = B ∩ A follows immediately from the definition of the
intersection between two sets.

A < BC # A A > B

A

B

C

A A

B

A

B

A   B

Figure 1.1.1 Four Venn diagrams

When dealing with three general sets A, B, and C, it is important to draw the Venn
diagram so that all possible relations between an element and each of the three sets are
represented. In other words, as in Fig. 1.1.3, the following eight different regions should all
be nonempty:7

1. (A ∩ B) \ C 2. (B ∩ C) \ A 3. (C ∩ A) \ B 4. A \ (B ∪ C)

5. B \ (C ∪ A) 6. C \ (A ∪ B) 7. (A ∩ B) ∩ C 8. ((A ∪ B) ∪ C)c

5 For arbitrary sets M, B, and T , it is true that (M \ B) ∪ (M \ T) = M \ (B ∩ T). It should become
easier to verify this equality after you have studied the following discussion of Venn diagrams.

6 Named after the English mathematician John Venn (1834–1923), who was the first to use them
extensively.

7 That is, all should be nonempty unless something more is known about the relation between the
three sets. For example, one might have specified that the sets must be disjoint, meaning that A ∩
B ∩ C = ∅. In this case region (7) in Fig. 1.1.3 disappears.
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A B

C

Figure 1.1.2 Venn diagram for A ∩ (B ∪ C)

A B

C

(1)

(2)
(3)

(4)

(5)

(6)(8)

(7)

Figure 1.1.3 Venn diagram for three sets

Venn diagrams are particularly useful when limited to no more than three sets. For
instance, consider the following possible relationship between the three sets A, B, and C:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (1.1.2)

Using only the definitions in Table 1.1.1, it is somewhat difficult to verify that Eq. (1.1.2)
holds for all sets A, B, C. Using a Venn diagram, however, it is easily seen that the two sets
on the left- and right-hand sides of (1.1.2) are both represented by the region made up of
the three regions that are shaded in both Fig. 1.1.2 and Fig. 1.1.3. This confirms Eq. (1.1.2).
Similar reasoning allows one to prove that

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (1.1.3)

Using either the definition of intersection and union or appropriate Venn diagrams,
one can see that A ∪ (B ∪ C) = (A ∪ B) ∪ C and that A ∩ (B ∩ C) = (A ∩ B) ∩ C. Conse-
quently, in such cases it does not matter where the parentheses are placed, so they can be
dropped and the expressions written as A ∪ B ∪ C and A ∩ B ∩ C. That said, note that the
parentheses cannot generally be removed in the two expressions on the left-hand sides of
Eqs (1.1.2) and (1.1.3). This is because A ∩ (B ∪ C) is generally not equal to (A ∩ B) ∪ C,
and A ∪ (B ∩ C) is generally not equal to (A ∪ B) ∩ C. 8

Notice, however, that this way of representing sets in the plane becomes unmanageable
if four or more sets are involved. This is because a Venn diagram with, for example, four
sets would have to contain 24 = 16 regions.9

Georg Cantor
The founder of set theory is Georg Cantor (1845–1918), who was born in Saint Peters-
burg but moved to Germany at the age of eleven. He is regarded as one of history’s great
mathematicians. This is not because of his contributions to the development of the useful,
but relatively trivial, aspects of set theory outlined above. Rather, Cantor is remembered
for his profound study of infinite sets. Below we try to give just a hint of his theory’s
implications.

8 For practice, demonstrate this fact by considering the case where A = {1, 2, 3}, B = {2, 3}, and
C = {4, 5}, or by using a Venn diagram.

9 One can show that a Venn diagram with n sets would have to contain 2n regions.
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A collection of individuals are gathering in a room that has a certain number of chairs.
How can we find out if there are exactly as many individuals as chairs? One method would
be to count the chairs and count the individuals, and then see if they total the same num-
ber. Alternatively, we could ask all the individuals to sit down. If they all have a seat to
themselves and there are no chairs unoccupied, then there are exactly as many individuals
as chairs. In that case each chair corresponds to an individual and each individual corre-
sponds to a chair—i.e., there is a “one-to-one correspondence” between individuals and
chairs.

Generally mathematicians say that two sets of elements have the same cardinality, if
there is a one-to-one correspondence between the sets. This definition is also valid for
sets with an infinite number of elements. Cantor struggled for three years to prove a sur-
prising implication of this definition—that there are as many points in a square as there
are points on one of its edges of the square, in the sense that the two sets have the same
cardinality.10

E X E R C I S E S F O R S E C T I O N 1 . 1

1. Let A = {2, 3, 4}, B = {2, 5, 6}, C = {5, 6, 2}, and D = {6}.
(a) Determine which of the following six statements are true: 4 ∈ C; 5 ∈ C; A ⊆ B;

D ⊆ C; B = C; and A = B.

(b) List all members of each of the following eight sets: A ∩ B; A ∪ B; A \ B; B \ A;
(A ∪ B) \ (A ∩ B); A ∪ B ∪ C ∪ D; A ∩ B ∩ C; and A ∩ B ∩ C ∩ D.

2. Let F, M, C, B, and T be the sets in Example 1.1.2.

(a) Describe the following sets: F ∩ B ∩ C, M ∩ F, and ((M ∩ B) \ C) \ T .

(b) Write the following statements in set terminology:

(i) All biology students are mathematics students.

(ii) There are female biology students in the university choir.

(iii) No tennis player studies biology.

(iv) Those female students who neither play tennis nor belong to the university choir all study
biology.

3. A survey revealed that 50 people liked coffee and 40 liked tea. Both these figures include 35 who
liked both coffee and tea. Finally, ten did not like either coffee or tea. How many people in all
responded to the survey?

4. Make a complete list of all the different subsets of the set {a, b, c}. How many are there if the
empty set and the set itself are included? Do the same for the set {a, b, c, d}.

5. Determine which of the following formulas are true. If any formula is false, find a counter example
to demonstrate this, using a Venn diagram if you find it helpful.

10 In 1877, in a letter to German mathematician Richard Dedekind (1831–1916), Cantor wrote of
this result: “I see it, but I do not believe it.”




